1			

Register No.:	
---------------	--

April 2024

<u>Time - Three hours</u> (Maximum Marks: 100)

- [N.B. 1. Answer all questions under Part-A. Each question carries 3 marks.
 - 2. Answer all the questions either (A) or (B) in Part-B. Each question carries 14 marks.
 - 3. Use of Refrigeration and Steam Tables are permitted.]

PART - A

- 1. Define Stefan- Boltzmann law of radiation.
- 2. Differentiate natural draught and forced draught cooling towers.
- 3. Define COP.
- 4. What are the advantages of solar absorption system?
- 5. What is capillary tube?
- 6. What are the properties of sulphur dioxide refrigerant?
- 7. What is degree of saturation?
- 8. What is sensible heating and cooling process?
- 9. What are the types of insulating materials?
- 10. What are the various room heat gain and loss components?

PART - B

- 11. (a) (i) Discuss dry ice refrigeration system. (6)
 - (ii) A reversed Carnot cycle working as heat pump is delivering 10,000 kcal/min to heat the conditioned space and maintain it at 25°C, when the outside atmospheric air temperature is 15°C.
 - (1) Find the heat pumped into the conditioned space from atmospheric air and the kW required for operating the cycle.
 - (2) If the same conditioned space is heated by electric heaters, determine the consumption of electricity in terms of kW consumed. (8)

(Or)

- (b) (i) Explain the construction and working principle of rotating vane type compressor with a neat sketch. (7)
 - (ii) Explain the construction and working principle of shell and tube condenser with neat sketch. (7)
- 12. (a) The temperature limits of an ammonia refrigerating system are 25°C and -10°C. If the gas is dry at the end of compression, find the COP of the cycle assuming no under cooling of the liquid ammonia.

(Or

- (b) Explain the construction and working of Lithium Bromide water absorption refrigeration system. State its applications.
- 13. (a) Explain the construction and working of thermostatic expansion valve with a neat sketch.

(Or

(b) Explain the construction and working of water cooler with neat sketch.

- 14. (a) (i) Explain the cooling and dehumidification process on psychrometric chart. (6)
 - (ii) Explain the construction and working of spray type air washer humidifier with a neat sketch. (8)

(Or)

- (b) A conference hall of 60 seating capacity is to be air conditioned. The outdoor air conditions are 32°C DBT and 22°C WBT and required comfort conditions are 22°C DBT and 55% RH. The quantity of air supplied is 0.5m³/min/participant. The comfort conditions are achieved first by dehumidifying the air and then cooling by the cooling coil. Find the following.
 - (i) DBT of the air leaving the dehumidifier.
 - (ii) Capacity of the dehumidifier.
 - (iii) Capacity of the cooling coil in TR.
 - (iv) Surface temperature of the cooling coil if the BPF of coil is 0.3.
- 15. (a) Explain the construction and working principle a window type air-conditioner with a neat sketch.

(Or)

(b) A conference room for seating 100 persons is to be maintained at 20°C DBT and 65% RH. The outdoor conditions are 35°C and 25°C WBT. The various loads in the auditorium are as follows. Sensible heat and latent heat loads per person, 90W and 40W respectively; lights and fans 20 kW; the air infiltration is 20 m³/min and fresh air supply is 100 m³/min, two third of recirculated room air and one third of fresh air are mixed before entering the cooling coils. The by-pass factor of the coils is 0.1. Determine SHF, apparatus dew point temperature and GTH load.