1	2	7	7
	J	•	1

Register No.:	

October 2024

<u>Time - Three hours</u> (Maximum Marks: 100)

- **[N.B.** 1. Answer all questions under Part-A. Each question carries 3 marks.
 - 2. Answer all the questions either (A) or (B) in Part-B. Each question carries 14 marks.]

PART - A

- 1. List out the properties of water at its critical point.
- 2. Define: dryness fraction.
- 3. Name the impurities present in water.
- 4. What are the factors influencing boiler efficiency?
- 5. Write the working principle of a wet scrubber.
- 6. Define condenser efficiency.
- 7. What are the differences between fissile and fertile fuel?
- 8. What is the function of moderators and reflectors?
- 9. State the uses of compressed air.
- 10. State the merits of open cycle gas turbine.

PART - B

11. (a) The following observations were recorded to find the dryness fraction of steam by combined separating and throttling calorimeter.

Total quantity of steam passed = 36 kg

Water drained from separator = 1.8 kg

Steam pressure before throttling = 12 bar

Steam pressure after throttling = 1 bar

Temperature of steam after throttling = 110°C

Specific heat of super heated steam = 2.09 kJ/kg K

Determine the (i) dryness fraction of steam entering into throttling calorimeter (ii) dryness fraction of steam in steam

main.

(b) Steam at a pressure of 10 bar and 0.9 dry expands to the atmospheric pressure hyperbolically. Specific heat of steam is 2.1 kJ/kg K. Calculate (i) work done (ii) change in internal energy (iii) change in enthalpy (iv) heat absorbed.

(Or)

[Turn over.....

12. (a) Explain the working of a BHEL high pressure boiler with a neat sketch.

(Or)

- (b) The following data were obtained in a boiler trial:
 Feed water supplied per hour = 690 kg at 28°C,
 Steam produced = 0.97 dry at 8 bar,
 Coal fired per hour = 91 kg of calorific value 27,200 kJ/kg,
 Ash and unburnt coal collected in fire bars = 7.5 kg/hr of
 calorific value 2,700 kJ/kg,
 Mass of flue gas per kg of coal burnt = 17.4 kg,
 Temperature of flue gas = 325°C,
 Room temperature = 17°C,
 Specific heat of flue gas = 1.005 kJ/kg K.
 Estimate boiler efficiency and draw up a heat balance sheet.
- 13. (a) Explain the working of thermal power plant with a layout.

(Or)

- (b) (i) A surface condenser having an absolute pressure of 0.010 bar is supplied with cooling water at the rate of 40 kg/kg of steam condensed. The rise in temperature of cooling water is 14°C. Find the dryness fraction of steam entering the condenser. The condensate leaves at 44°C. Also calculate the amount of heat to be removed from 1kg of steam. (7)
 - (ii) The temperature of condensate in a condenser is 31°C and the vacuum is 705 mm of mercury. The barometer reading is 760 mm of mercury. Calculate the vacuum efficiency of condenser. (7)
- 14. (a) Explain the working of hydel power plant with a layout diagram. Also write its merits and demerits.

(Or)

- (b) Explain the working of CANDU type reactor with a neat sketch.
- 15. (a) Explain the working of turbo jet engine with a neat sketch. Also state its advantages.

(Or)

(b) Explain the working of centrifugal compressor with a neat sketch.